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APP

Matrix Mathematics

A.1 DEFINITIONS

The mathematical description of many physical problems is often simplified by
the use of rectangular arrays of scalar quantities of the form

apy apn e Aln
ang an e dop

[Al=] . : : : (A1)
Al Am2 ' OAmn

Such an array is known as a matrix, and the scalar values that compose the array
are the elements of the matrix. The position of each element a;; is identified by
the row subscript i and the column subscript j.

The number of rows and columns determine the order of a matrix. A matrix
having m rows and n columns is said to be of order “m by n”” (usually denoted as
m x n). If the number of rows and columns in a matrix are the same, the matrix
is a square matrix and said to be of order n. A matrix having only one row is
called a row matrix or row vector. Similarly, a matrix with a single column is a
column matrix or column vector.

If the rows and columns of a matrix [A] are interchanged, the resulting
matrix is known as the transpose of [A], denoted by [A]” . For the matrix defined
in Equation A.1, the transpose is

ayp ay - am

T djpp dyp - dp2
(A" =1 . : : : (A2)

Ay Ay crr Qmn

and we observe that, if [A] is of order m by n, then [A]” is of order n by m. For
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example, if [A] is given by

wefi 5 1]

the transpose of [A] is

2 4
[Al"=|-1 0
3 2

Several important special types of matrices are defined next. A diagonal
matrix is a square matrix composed of elements such that a;; = Oand i # j.
Therefore, the only nonzero terms are those on the main diagonal (upper left to
lower right). For example,

[A] =

(=Nl V)
S = O
w o O

is a diagonal matrix.
An identity matrix (denoted [/]) is a diagonal matrix in which the value of
the nonzero terms is unity. Hence,

[Al=[]=

S O =
S = O
- O O

is an identity matrix.

A null matrix (also known as a zero matrix [0]) is a matrix of any order in
which the value of all elements is 0.

A symmetric matrix is a square matrix composed of elements such that the
nondiagonal values are symmetric about the main diagonal. Mathematically,
symmetry is expressed as a;; = a;; and i # j. For example, the matrix

2 =2 0
[Al=] -2 4 -3
0 -3 1

is a symmetric matrix. Note that the transpose of a symmetric matrix is the same
as the original matrix.
A skew symmetric matrix is a square matrix in which the diagonal terms a;;

have a value of 0 and the off-diagonal terms have values such thata;; = —a;;. An
example of a skew symmetric matrix is
0 -2 0
[Al=]12 0 3
0 -3 0

For a skew symmetric matrix, we observe that the transpose is obtained by
changing the algebraic sign of each element of the matrix.
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A.2 ALGEBRAIC OPERATIONS

Addition and subtraction of matrices can be defined only for matrices of the same
order. If [A] and [ B] are both m x n matrices, the two are said to be conformable
for addition or subtraction. The sum of two m x n matrices is another m x n
matrix having elements obtained by summing the corresponding elements of the
original matrices. Symbolically, matrix addition is expressed as

[C]=[A] + [B] (A.3)
where
C[jza[j+bij i=1,m j=1Ln (A4)

The operation of matrix subtraction is similarly defined. Matrix addition and sub-
traction are commutative and associative; that is,

[A]+ [B] = [B] + [A] (A.5)
[A]+ ([B]+ [C]D) = ([A]+ [B] + [C] (A.6)

The product of a scalar and a matrix is a matrix in which every element of
the original matrix is multiplied by the scalar. If a scalar ¥ multiplies matrix [A],
then

[B] = ulA] (A7)
where the elements of [ B] are given by
bij = ua;; i = l,m ] = 1,1’1 (AS)

Matrix multiplication is defined in such a way as to facilitate the solution of
simultaneous linear equations. The product of two matrices [A] and [ B] denoted

[C]=[Al[B] (A9)

exists only if the number of columns in [A] is the equal to the number of rows in
[B]. If this condition is satisfied, the matrices are said to be conformable for
multiplication. If [A] is of order m x p and [B] is of order p x n, the matrix
product [C] = [A][B] is an m x n matrix having elements defined by

p
C,'j = Z a,‘kbkj (AIO)
k=1

Thus, each element ¢;; is the sum of products of the elements in the ith row of [A]
and the corresponding elements in the jth column of [ B]. When referring to the
matrix product [A][ B], matrix [A] is called the premultiplier and matrix [B] is
the postmultiplier.

In general, matrix multiplication is not commutative; that is,

[Al[B] # [B][A] (A.11)
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Matrix multiplication does satisfy the associative and distributive laws, and we
can therefore write

([AIBDIC] = [AI([BIICD
[AI([B] + [C]) = [A][B] + [A][C] (A.12)
([Al + [BDIC] = [A][C] + [B][C]

In addition to being noncommutative, matrix algebra differs from scalar
algebra in other ways. For example, the equality [A][B] = [A][C] does not nec-
essarily imply [B] = [C], since algebraic summing is involved in forming the
matrix products. As another example, if the product of two matrices is a null
matrix, that is, [A][B] = [0], the result does not necessarily imply that either [A]
or [ B] is a null matrix.

A.3 DETERMINANTS

The determinant of a square matrix is a scalar value that is unique for a given
matrix. The determinant of an n x n matrix is represented symbolically as

ayp diz -+ dip
dzy dyp -+ dy

det[A] =|A[=| . . : i (A.13)
ap1 dyp2 -+ dpp

and is evaluated according to a very specific procedure. First, consider the 2 x 2
matrix

ap amn
Al = A.14
ar= o ae] (A.14)
for which the determinant is defined as
|Al = Z; Z; = a11an — d2as; (A.15)

Given the definition of Equation A.15, the determinant of a square matrix of any
order can be determined.
Next, consider the determinant of a 3 x 3 matrix

ayp ap as

dz1  dz2  dz3
asy  dsy dasjz

1Al = (A.16)

defined as
|A]l = ayi(axnass — axaxn) — app(azas; — axasy) + aiz(anan —axpaz) (A7)

Note that the expressions in parentheses are the determinants of the second-order
matrices obtained by striking out the first row and the first, second, and third
columns, respectively. These are known as minors. A minor of a determinant is
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another determinant formed by removing an equal number of rows and columns
from the original determinant. The minor obtained by removing row i and col-
umn j is denoted | M;;|. Using this notation, Equation A.17 becomes

|Al = an M| — app|Mp| + a| M| (A.18)

and the determinant is said to be expanded in terms of the cofactors of the first
row. The cofactors of an element a;; are obtained by applying the appropriate
algebraic sign to the minor |M;;| as follows. If the sum of row number i and col-
umn number j is even, the sign of the cofactor is positive; if i + j is odd, the sign
of the cofactor is negative. Denoting the cofactor as C;; we can write

Cij = (=) M| (A.19)

The determinant given in Equation A.18 can then be expressed in terms of co-
factors as

|A| = a;1Cy1 + apCrp + azCrs (A.20)

The determinant of a square matrix of any order can be obtained by expand-
ing the determinant in terms of the cofactors of any row i as

|[A] = Zaijcij (A.21)
j=1
or any column j as
|A] = Zaijcij (A.22)
i=1

Application of Equation A.21 or A.22 requires that the cofactors C;; be further
expanded to the point that all minors are of order 2 and can be evaluated by
Equation A.15.

A.4 MATRIX INVERSION

The inverse of a square matrix [A] is a square matrix denoted by [A]~' and
satisfies

[A]7'[A] = [AN[A]" = [1] (A.23)

that is, the product of a square matrix and its inverse is the identity matrix of
order n. The concept of the inverse of a matrix is of prime importance in solving
simultaneous linear equations by matrix methods. Consider the algebraic system
anxi +apx, +apixz =y
a21X] + axnXy + asxz = y; (A.24)
azixy + azxy + asxz = ys

which can be written in matrix form as

[Al{x} = {y} (A.25)
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where

ailr ap  an
[Al=| ax axn ax (A.26)
asy asy dass

is the 3 x 3 coefficient matrix,

X
{x} = {xz } (A.27)
X3
is the 3 x 1 column matrix (vector) of unknowns, and
V1
M=1» (A.28)
Y3

is the 3 x 1 column matrix (vector) representing the right-hand sides of the equa-
tions (the “forcing functions”).

If the inverse of matrix [A] can be determined, we can multiply both sides of
Equation A.25 by the inverse to obtain

(A1 [Al{x} = [A]7' () (A.29)

Noting that
[AT7'[Al{x) = (AT [AD (¥} = [1]{x) = (x) (A.30)
the solution for the simultaneous equations is given by Equation A.29 directly as
) = 14170 (A31)

While presented in the context of a system of three equations, the result repre-
sented by Equation A.31 is applicable to any number of simultaneous algebraic
equations and gives the unique solution for the system of equations.

The inverse of matrix [A] can be determined in terms of its cofactors and
determinant as follows. Let the cofactor matrix [C] be the square matrix having as
elements the cofactors defined in Equation A.19. The adjoint of [A] is defined as

adj[A] = [C]T (A.32)
The inverse of [A] is then formally given by
—1 _ adj[A]
[A]7! = (A.33)
[A]

If the determinant of [A] is 0, Equation A.33 shows that the inverse does not
exist. In this case, the matrix is said to be singular and Equation A.31 provides
no solution for the system of equations. Singularity of the coefficient matrix
indicates one of two possibilities: (1) no solution exists or (2) multiple (non-
unique) solutions exist. In the latter case, the algebraic equations are not linearly
independent.
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Calculation of the inverse of a matrix per Equation A.33 is cumbersome and
not very practical. Fortunately, many more efficient techniques exist. One such
technique is the Gauss-Jordan reduction method, which is illustrated using a
2 x 2 matrix:

ap  an
[A] = [ } A34

as;  ax ¢ )
The gist of the Gauss-Jordan method is to perform simple row and column oper-
ations such that the matrix is reduced to an identity matrix. The sequence of
operations required to accomplish this reduction produces the inverse. If we
divide the first row by a;;, the operation is the same as the multiplication

Ly Rt
[Bil[A] = | a ["“ ‘”2} = an (A.35)
az;  ax
0 1 ay axn

Next, multiply the first row by a; and subtract from the second row, which is
equivalent to the matrix multiplication

oo 1 = : o : Z_i?
a
[Bz][Bl][A]=[_a21 1} an | = P Y
a  ax 0 a22—£a21 0o —
apy an
(A.36)
Multiply the second row by a;;/|Al:
] a2 a
1 0 an -
[B31[B:1[B11[A] = o Al = aii (A.37)
Al ]} 0 — 0 1
ain

Finally, multiply the second row by aj»/a;; and subtract from the first row:

_ae [y @
[B41[B31[B:1[B11[A] = an an | = [O 1} =[] (A.33)
0 1 0 1
Considering Equation A.23, we see that

[A]™" = [B4l[B;1[B2][B1] (A.39)

and carrying out the multiplications in Equation A.39 results in

_ 1 a —a

A= —| 72 12} A.40
[A] |A] [—6121 ap ( )

This application of the Gauss-Jordan procedure may appear cumbersome, but the
procedure is quite amenable to computer implementation.
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A.5 MATRIX PARTITIONING

Any matrix can be subdivided or partitioned into a number of submatrices of
lower order. The concept of matrix partitioning is most useful in reducing the
size of a system of equations and accounting for specified values of a subset of
the dependent variables. Consider a system of n linear algebraic equations gov-
erning n unknowns x; expressed in matrix form as

[Al{x} = {f} (A.41)

in which we want to eliminate the first p unknowns. The matrix equation can be
written in partitioned form as

[An]l [An] | )X J{F)
[[Azl] [Azz]i| { (X2} } - { (Fy) } (A.42)

where the orders of the submatrices are as follows

[Anl=pxp
[A]l = px(n—p)
[Ay]] = (n—p) xp
[An]l = (n—p) x (n = p)
{Xi,{F}=pxl1
{Xoh, {Fi2} = (n—p) x 1

(A.43)

The complete set of equations can now be written in terms of the matrix parti-

tions as
[AnH{X1} + [Anl{ X2} = {F1} (A4d)
[AxH{ X1} + [Anl{X2} = {F2}
The first p equations (the upper partition) are solved as
(X1} = [An]" ({(F) = [Anl{Xa) (A45)

(implicitly assuming that the inverse of A, exists). Substitution of Equation A.45
into the remaining n — p equations (the lower partition) yields

(IAn] — [An]l|A 1] AR (X2} = (Fa) — [An]|A 1| 1(F) (A46)

Equation A.46 is the reduced set of n — p algebraic equations representing the
original system and containing all the effects of the first p equations. In the con-
text of finite element analysis, this procedure is referred to as static condensation.

As another application (commonly encountered in finite element analysis),
we consider the case in which the partitioned values {X,} are known but the cor-
responding right-hand side partition {F;] is unknown. In this occurrence, the
lower partitioned equations are solved directly for { X,] to obtain

(X2} = [An] "({F) — [Anl{X1)) (A.47)

The unknown values of { F;] can then be calculated directly using the equations
of the upper partition.



